

Wydział Mechaniczny Energetyki i Lotnictwa Zakład Wytrzymałości Materiałów i Konstrukcji

Metoda elementów skończonych (MES2)

Wykład 4. Zagadnienia nieliniowe

10.2024

LINIOWY MODEL MES ZACHOWANIA STRUKTURY ODKSZTAŁCALNEJ

Jeśli obciążenie da się rozłożyć na składowe:

$$\{F_*\} = \alpha \{F_a\} + \beta \{F_b\}$$

to można użyć metodę superpozycji:

$$\{q_*\} = [K]^{-1}\{F_*\}, \implies \{q_*\} = [K]^{-1}(\alpha\{F_a\} + \beta\{F_b\}) = \alpha[K]^{-1}\{F_a\} + \beta[K]^{-1}\{F_b\}$$

i wtedy rozwiązanie końcowe jest sumą rozwiązań składowych: $\{q_*\} = \alpha \{q_a\} + \beta \{q_b\}$

Nieliniowości strukturalne powodują, że odpowiedź konstrukcji zmienia się nieproporcjonalnie do przyłożonych sił. Realistycznie rzecz biorąc, prawie wszystkie konstrukcje są nieliniowe z natury, ale nie zawsze w takim stopniu, że nieliniowości te mają znaczący wpływ na analizę.

NIELINIOWY MODEL MES ZACHOWANIA STRUKTURY ODKSZTAŁCALNEJ

W analizie nieliniowej macierz sztywności konstrukcji i wektor obciążenia mogą zależeć od rozwiązania i dlatego są nieznane.

Aby rozwiązać problem, program używa procedury iteracyjnej, w której szereg przybliżeń liniowych zbiega się do rzeczywistego rozwiązania nieliniowego.

U₁

 $U_2 U_3$

- Czy rozwiązanie istnieje? Ile rozwiązań istnieje?
- Rozwiązanie czasochłonne
- Iteracyjny proces rozwiązania problem konwergencji
- Wyniki obciążenia zależą od historii ładowania

U

Przyczyny zachowania nieliniowego

Nieliniowości materiałowe - nieliniowe zależności σ - ϵ

Czynniki mogące wpływać na właściwości σ - ε materiału:

- historia obciążenia (jak w przypadku odpowiedzi sprężysto-plastycznej),
- warunki środowiskowe (np. temperatura)
- <u>czas w którym obciążenie działa (jak w przypadku pełzania).</u>

prosty sprężysto-plastyczny model zachowania się materiału

Nieliniowości geometryczne

Jeśli struktura doświadcza dużych odkształceń, jej zmieniająca się konfiguracja geometryczna może spowodować, że struktura zareaguje nieliniowo.

Przyczyny zachowania nieliniowego (c.d.)

Tarcie, oddziaływanie kontaktowe, przerwy (gaps), liny

Znaczenie historii obciążenia dla wyniku końcowego obciążenia

Test 1: zderzenie walca z rurą

Zgniatanie quasistatyczne:

Zderzenie (pełna dynamika)

Test 2. Zderzenie sekcji kadłuba samolotu Boeing 737-200

.100E-03

Test 3. Analiza utraty stateczności ściskanego osiowo elementu cienkościennego o przekroju zamkniętym

1) Analiza pod obciążeniem statycznym zmiennym w czasie, zadanym przemieszczeniowo

2) Analiza dynamiczna, po uderzeniu nieskończenie dużą masą o ustalonej prędkości (nieskończenie duża energia uderzenia). 1

11

Opis ciała odkształcalnego o nieliniowych właściwościach

Wektory składowych stanu odkształcenia i naprężenia

$$\boldsymbol{\varepsilon}^{T} = [\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}, \gamma_{12}, \gamma_{23}, \gamma_{13}], \quad \boldsymbol{\sigma}^{T} = [\sigma_{11}, \sigma_{22}, \sigma_{33}, \sigma_{12}, \sigma_{23}, \sigma_{13}].$$

Związki kinematyczne pomiędzy odkształceniami i przemieszczeniami otrzymuje się przez analizę zmian wymiarów elementarnego fragmentu ciała, a następnie uzyskane wyrażenie rozwija się w szereg Taylora:

$$\varepsilon_{ij} = \frac{1}{2} (u_{i,j} + u_{j,i} + u_{\alpha,i} u_{\alpha,j}), \quad \text{gdzie indeksy po przecinkach oznaczają róźniczkowanie po składowych i, j, α = 1, 2, 3.$$

$$\varepsilon = \begin{cases} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \gamma_{12} \\ \gamma_{23} \\ \gamma_{13} \end{cases} = \begin{cases} u_{1,1} \\ u_{2,2} \\ u_{3,3} \\ u_{1,2} + u_{2,1} \\ u_{2,3} + u_{3,2} \\ u_{1,3} + u_{3,1} \end{cases} + \begin{cases} \frac{1}{2} (u_{1,1})^2 + \frac{1}{2} (u_{2,2})^2 + \frac{1}{2} (u_{3,2})^2 \\ \frac{1}{2} (u_{1,2})^2 + \frac{1}{2} (u_{2,3})^2 + \frac{1}{2} (u_{3,3})^2 \\ \frac{1}{2} (u_{1,3})^2 + \frac{1}{2} (u_{2,3})^2 + \frac{1}{2} (u_{3,3})^2 \\ \frac{1}{2} (u_{1,3})^2 + \frac{1}{2} (u_{2,3})^2 + \frac{1}{2} (u_{3,3})^2 \\ \frac{1}{2} (u_{1,3} + u_{2,1} u_{2,2} + u_{3,1} u_{3,3}) \\ \frac{1}{2} (u_{1,3} + u_{2,1} u_{2,2} + u_{3,1} u_{3,3}) \\ \frac{1}{2} (u_{1,3} + u_{2,1} u_{2,2} + u_{3,1} u_{3,3}) \\ \frac{1}{2} (u_{1,3} + u_{2,1} u_{2,3} + u_{3,1} u_{3,3}) \\ \frac{1}{2} (u_{1,3} + u$$

Ę

$$\boldsymbol{N}_{i \bullet, j}{}^{T} = \begin{bmatrix} \frac{\partial n_{i1}}{\partial x_{j}}, & \frac{\partial n_{i2}}{\partial x_{j}}, & \dots, & \frac{\partial n_{iL}}{\partial x_{j}} \end{bmatrix}$$
$$\boldsymbol{N}_{,j} = \begin{bmatrix} \frac{\partial n_{11}}{\partial x_{j}} & \frac{\partial n_{12}}{\partial x_{j}} & \dots & \frac{\partial n_{1L}}{\partial x_{j}} \\ \frac{\partial n_{12}}{\partial x_{j}} & \frac{\partial n_{22}}{\partial x_{j}} & \dots & \frac{\partial n_{2L}}{\partial x_{j}} \\ \frac{\partial n_{13}}{\partial x_{j}} & \frac{\partial n_{23}}{\partial x_{j}} & \dots & \frac{\partial n_{3L}}{\partial x_{j}} \end{bmatrix} , \quad i, j = 1, 2, 3.$$
Liniowa sh
Macierz H

$$\boldsymbol{B}_{0} = \begin{cases} N_{1 \bullet, 1}^{T} \\ N_{2 \bullet, 2}^{T} \\ N_{3 \bullet, 3}^{T} \\ N_{1 \bullet, 2}^{T} + N_{2 \bullet, 1}^{T} \\ N_{2 \bullet, 3}^{T} + N_{3 \bullet, 2}^{T} \\ N_{1 \bullet, 3}^{T} + N_{3 \bullet, 1}^{T} \end{cases}, \qquad \boldsymbol{B}_{1} = \begin{cases} \boldsymbol{q}^{T} \boldsymbol{N}_{, 1}^{T} \boldsymbol{N}_{, 1} \\ \boldsymbol{q}^{T} \boldsymbol{N}_{, 2}^{T} \boldsymbol{N}_{, 2} \\ \boldsymbol{q}^{T} \boldsymbol{N}_{, 3}^{T} \boldsymbol{N}_{, 3} \\ \boldsymbol{q}^{T} (\boldsymbol{N}_{, 1}^{T} \boldsymbol{N}_{, 2} + \boldsymbol{N}_{, 2}^{T} \boldsymbol{N}_{, 1}) \\ \boldsymbol{q}^{T} (\boldsymbol{N}_{, 2}^{T} \boldsymbol{N}_{, 3} + \boldsymbol{N}_{, 3}^{T} \boldsymbol{N}_{, 2}) \\ \boldsymbol{q}^{T} (\boldsymbol{N}_{, 1}^{T} \boldsymbol{N}_{, 3} + \boldsymbol{N}_{, 3}^{T} \boldsymbol{N}_{, 2}) \\ \boldsymbol{q}^{T} (\boldsymbol{N}_{, 1}^{T} \boldsymbol{N}_{, 3} + \boldsymbol{N}_{, 3}^{T} \boldsymbol{N}_{, 1}) \end{cases},$$

wa składowa odkształcenia $\mathbf{\varepsilon}^L$ jest iloczynem macierzy \mathbf{B}_0 i wektora parametrów węzłowych \mathbf{q} . erz \mathbf{B}_0 zależy wyłącznie od funkcji kształtu.

Nieliniowa składowa odkształcenia $\mathbf{\varepsilon}^{NL}$ jest iloczynem macierzy \mathbf{B}_1 i wektora parametrów węzłowych \mathbf{q} .

Zależność pomiędzy składowymi wektora składowych stanu naprężenia σ , a składowymi wektora odkształcenia sprężystego $\boldsymbol{\varepsilon}_{a}$ można zapisać na podstawie prawa Hooka przy pomocy macierzy konstytutywnej **D**, która zawiera właściwości sprężyste materiału (E i ν): $\sigma = D\epsilon_{\alpha}$

Zależność $\sigma = f(\varepsilon)$ dotyczącą materiału o właściwościach sprężystoplastycznych z umocnieniem dla jednoosiowego stanu naprężenia.

 $\boldsymbol{\varepsilon} = \boldsymbol{\varepsilon}_e + \boldsymbol{\varepsilon}_p.$

Odkształcenie całkowite **ε**:

Poza zakresem sprężystym przyrost odkształceń plastycznych $d\varepsilon_p$ wyznacza się np. z prawa płynięcia jako iloczyn skalarnego mnożnika $d\lambda$ i pochodnej potencjału plastycznego Q względem wektora składowych stanu naprężenia:

 $d\boldsymbol{\varepsilon}_p = d\lambda \frac{\partial Q}{\partial \boldsymbol{\sigma}}.$ Jeśli potencjał Q zastąpi się funkcją plastyczności $F(\sigma, \kappa)$, zależność przyjmie postać stowarzyszonego prawa płynięcia (z odpowiednim warunkiem plastyczności). Współczynnik k oznacza pracę plastyczną zsumowaną dla całej historii obciążenia, związaną z izotropowym umocnieniem materiału. Korzystając z

hipotezy Hubera-Misesa-Hencky'ego warunek plastyczności zapisuje się w postaci:

$$F = \sigma_{redHMH} - R_e(\kappa) = 0, \qquad F = \sqrt{\frac{1}{2} \{(\sigma_1 - \sigma_2)^2 + (\sigma_2 - \sigma_3)^2 + (\sigma_3 - \sigma_1)^2\} + 3(\tau_{12}^2 + \tau_{23}^2 + \tau_{31}^2)} - R_e(\kappa) = 0.$$

Po przekształceniach mamy:

$$d\boldsymbol{\sigma} = \boldsymbol{D} \left(d\boldsymbol{\varepsilon} - d\boldsymbol{\varepsilon}_{p} \right) = \left\{ \boldsymbol{D} - \boldsymbol{D} \frac{\partial F}{\partial \boldsymbol{\sigma}} \frac{\partial F}{\partial \boldsymbol{\sigma}^{T}} \boldsymbol{D} \left(E_{u} + \frac{\partial F}{\partial \boldsymbol{\sigma}^{T}} \boldsymbol{D} \frac{\partial F}{\partial \boldsymbol{\sigma}} \right)^{-1} \right\} d\boldsymbol{\varepsilon} = \boldsymbol{D}^{*} d\boldsymbol{\varepsilon}.$$

przyrost naprężenia

Jeśli w ustroju nie występują odkształcenia plastyczne macierz \mathbf{D}^* jest równa macierzy konstytutywnej \mathbf{D}

 $F(\mathbf{\sigma}, \mathbf{\kappa}) = 0$ $\partial \sigma$ $d\sigma$ σ_{l}

Zasada prac przygotowanych

Równania równowagi ciała przedstawionego na rysunku można uzyskać z zasady prac przygotowanych, pamiętając, że praca przygotowana reakcji sztywnych więzów jest równa zero:

$$\int_{V} \boldsymbol{\sigma}^{T} \delta \boldsymbol{\varepsilon} \, dV - \int_{Sp} \boldsymbol{p}^{T} \delta \boldsymbol{u} \, dV - \sum_{i=1}^{m} \boldsymbol{Q}^{i} \delta \boldsymbol{u}_{i} - \int_{V} \boldsymbol{m}^{T} \delta \boldsymbol{u} \, dV = 0$$

Siły masowe **m** wyznacza się z iloczynu gęstości i przyspieszeń $\ddot{\mathbf{u}}(t)$: $|\mathbf{m} = -\rho N \ddot{\mathbf{q}}|$.

<u>Uogólnione przemieszczenie przygotowane $\delta \mathbf{u}$ wyznacza się jako iloczyn macierzy funkcji kształtu</u> i przemieszczenia przygotowanego parametrów węzłowych: $\delta \boldsymbol{u} = \boldsymbol{N} \, \delta \boldsymbol{q}.$

Przemieszczenia przygotowane odkształceń $\delta \varepsilon$ wyznacza się wykorzystując liniowość macierzy **B**₁ względem wektorów **q** i δ **q**:

$$\delta \boldsymbol{\varepsilon} = \boldsymbol{B}_0 \delta \boldsymbol{q} + \frac{1}{2} \boldsymbol{B}_1(\boldsymbol{q}) \delta \boldsymbol{q} + \frac{1}{2} \boldsymbol{B}_1(\delta \boldsymbol{q}) \boldsymbol{q} = (\boldsymbol{B}_0 + \boldsymbol{B}_1(\boldsymbol{q})) \delta \boldsymbol{q}.$$

Korzystając z powyższych zależności oraz przemienności iloczynu skalarnego wektorów zasadę prac przygotowanych da się przedstawić w następujący sposób:

$$\int_{V} \delta \boldsymbol{q}^{T} (\boldsymbol{B}_{0}^{T} + \boldsymbol{B}_{1}^{T}) \boldsymbol{\sigma} \, dV - \int_{Sp} \delta \boldsymbol{q}^{T} \boldsymbol{N}^{T} \boldsymbol{p} \, dV - \sum_{i=1}^{m} \delta \boldsymbol{q}^{T} \boldsymbol{N}_{i}^{T} \boldsymbol{Q}^{i} + \int_{V} \delta \boldsymbol{q}^{T} \boldsymbol{N}^{T} \rho \boldsymbol{N} \boldsymbol{\ddot{q}} \, dV = 0.$$

Zapisujac powyższe równanie po umieszczeniu wariacji δq przed znakami całek i sumy otrzymamy:

$$\delta \boldsymbol{q}^{T} \left(\int_{V} (\boldsymbol{B}_{0}^{T} + \boldsymbol{B}_{1}^{T}) \boldsymbol{\sigma} \, dV - \int_{Sp} \boldsymbol{N}^{T} \boldsymbol{p} \, dV - \sum_{i=1}^{m} \boldsymbol{N}_{i}^{T} \boldsymbol{Q}^{i} + \int_{V} \boldsymbol{N}^{T} \boldsymbol{\rho} \boldsymbol{N} \boldsymbol{\ddot{q}} \, dV \right) = 0,$$

Ponieważ przemieszczenia przygotowane δq są dowolne i różne od zera, spełnienie tego równania wymaga zerowania się wyrażenia w nawiasie.

Grupując poszczególne wyrazy w <u>wektor sił wewnętrznych</u> $\mathbf{R}(\mathbf{q})$ i <u>wektor obciążeń zewnętrznych</u> \mathbf{R}^0 niezależny od parametrów węzłowych, uzyskuje się następujący układ równań nieliniowych:

$$\boldsymbol{R}(\boldsymbol{q}) - \boldsymbol{R}^0 = \boldsymbol{0}, \qquad (*)$$

w którym:

$$\boldsymbol{R}(\boldsymbol{q}) = \int_{V} (\boldsymbol{B}_{0}^{T} + \boldsymbol{B}_{1}^{T}) \boldsymbol{\sigma} \, dV,$$

$$\boldsymbol{R}^{0} = \int_{Sp} \boldsymbol{N}^{T} \boldsymbol{p} \, dV + \sum_{i=1}^{m} \boldsymbol{N}_{i}^{T} \boldsymbol{Q}^{i} - \int_{V} \boldsymbol{N}^{T} \boldsymbol{\rho} \boldsymbol{N} \boldsymbol{\ddot{q}} \, dV.$$

W zagadnieniach dynamicznych z tłumieniem zależność powyższą uzupełnia się o macierz tłumienia C, proporcjonalną do prędkości $d\mathbf{q}/dt$. Pełne równanie ruchu ciała przyjmuje wtedy następującą postać:

$$M\ddot{q} + C\dot{q} + K(q)q = P(t), \quad (**)$$

w którym: K(q)q = R(q), $P(t) = \int_{Sp} N^T p(t) dV + \sum_{i=1}^m N_i^T Q^i(t)$, $M = \int_V N^T \rho N dV$.

Macierz M jest macierzą masową, wektor P(t) zawiera obciążenia zależne od czasu, natomiast K(q) jest nieliniową macierzą sztywności, zależną od przemieszczeń węzłowych.

Układ równań (*) rozwiązuje się metodami iteracyjnymi, np. metodą Newtona-Raphsona, która polega na linearyzacji przyrostu wektora **R** wokół położenia $\mathbf{q} = \mathbf{q}_0$, uzyskiwanej przez rozwinięcie wyrażenia (*) w szereg Taylora, łącznie z wyrazem zawierającym pierwszą pochodną:

$$\boldsymbol{R}(\boldsymbol{q}) = \boldsymbol{R}(\boldsymbol{q}_0) + \frac{\partial \boldsymbol{R}(\boldsymbol{q})}{\partial \boldsymbol{q}} \Delta \boldsymbol{q}$$

Pochodna wektora **R** względem wektora **q** oznaczana jest często jako macierz styczna **K**_T. Przy różniczkowaniu należy uwzględnić wzór $\mathbf{D}^* = \frac{d\sigma}{d\varepsilon}$: $\frac{\partial \varepsilon}{\partial q} = \mathbf{B}_0^T + \mathbf{B}_1^T$, $\frac{\partial \sigma}{\partial q} = \frac{\partial \sigma}{\partial \varepsilon} \frac{\partial \varepsilon}{\partial q} = \mathbf{D}^* \frac{\partial \varepsilon}{\partial q}$.

Po uwzględnieniu powyższych związków macierz styczna \mathbf{K}_T może być przedstawiona jako suma trzech macierzy:

$$\boldsymbol{K}_{T} = \frac{\partial \boldsymbol{R}(\boldsymbol{q})}{\partial \boldsymbol{q}} = \int_{V} \frac{\partial (\boldsymbol{B}_{0}^{T} \boldsymbol{\sigma})}{\partial \boldsymbol{q}} \, dV + \int_{V} \frac{\partial (\boldsymbol{B}_{1}^{T} \boldsymbol{\sigma})}{\partial \boldsymbol{q}} \, dV = \boldsymbol{K}_{0} + \boldsymbol{K}_{G} + \boldsymbol{K}_{L}, \quad (***)$$

15

$$\boldsymbol{K}_{T} = \frac{\partial \boldsymbol{R}(\boldsymbol{q})}{\partial \boldsymbol{q}} = \int_{V} \frac{\partial (\boldsymbol{B}_{0}^{T} \boldsymbol{\sigma})}{\partial \boldsymbol{q}} \, dV + \int_{V} \frac{\partial (\boldsymbol{B}_{1}^{T} \boldsymbol{\sigma})}{\partial \boldsymbol{q}} \, dV = \boldsymbol{K}_{0} + \boldsymbol{K}_{G} + \boldsymbol{K}_{L}, \quad (***)$$

gdzie:

 $K_{0} = \int_{V} B_{0}^{T} D^{*} B_{0}^{T} dV - \text{początkowa macierz sztywności,}$ $K_{G} = \int_{V} [N_{,1}^{T} N_{,2}^{T} N_{,3}^{T}] \begin{bmatrix} \sigma_{11}^{1} 0 & \sigma_{12} & \sigma_{13} & \sigma_{13} & \sigma_{13} & \sigma_{13} & \sigma_{13} & \sigma_{12} & \sigma_{13} & \sigma_{13} & \sigma_{12} & \sigma_{13} & \sigma_{13} & \sigma_{12} & \sigma_{13} & \sigma_{12} & \sigma_{13} & \sigma_{12} & \sigma_{12} & \sigma_{13} & \sigma_{12} & \sigma_{12} & \sigma_{13} & \sigma_{13}$

- geometryczna macierz sztywności (wynikająca ze stanu naprężenia),

$$\boldsymbol{K}_{L} = \int_{V} \boldsymbol{B}_{0}^{T} \boldsymbol{D}^{*} \boldsymbol{B}_{1}^{T} dV + \int_{V} \boldsymbol{B}_{1}^{T} \boldsymbol{D}^{*} \boldsymbol{B}_{0}^{T} dV + \int_{V} \boldsymbol{B}_{1}^{T} \boldsymbol{D}^{*} \boldsymbol{B}_{1}^{T} dV - \text{macierz dużych przemieszczeń.}$$

Dla liniowej statyki, przy małych przemieszczeniach i wyeliminowaniu członów zależnych od czasu otrzymujemy następującą postać:

 $K_0 q = P$, gdzie: P – wektor stałych obciążeń zewnętrznych.

W przypadku nieliniowej statyki, związanej z uwzględnieniem dużych przemieszczeń oraz wpływu naprężeń na sztywność ciała, układ równań (**) przyjmuje postać, w której macierz sztywności zależy od parametrów węzłowych:

$$K(q)q = P$$
, $K_T = K_0 + K_G + K_L$,

gdzie: K_T – macierz styczna, otrzymywana z zależności (***).

Metoda iteracyjna Newtona-Raphsona

Rozwiązanie układu równań nieliniowych w postaci (*) metodą Newtona-Raphsona polega na wielokrotnym rozwiązaniu zadania liniowego uzyskanego po linearyzacji wektora obciążeń wewnętrznych $\mathbf{R}(\mathbf{q})$.

W położeniu wyjściowym znany jest wektor \mathbf{q}_0 oraz wektor obciążeń zewnętrznych \mathbf{R}^0 . W pierwszej iteracji indeks i = 0. Przebieg dojścia do rozwiązania jest następujący:

- 1. Wyznaczenie wektora $\mathbf{R}(\mathbf{q}_i)$,
- 2. Wyznaczenie wektora residuum: $\Delta \mathbf{R}(\mathbf{q}_i) = \mathbf{R}^0 \mathbf{R}(\mathbf{q}_i)$,
- 3. Wyznaczenie macierzy stycznej $\mathbf{K}_T(\mathbf{q}_i)$,
- 4. Wyznaczenia odwróconej macierzy stycznej $[\mathbf{K}_T(\mathbf{q}_i)]^{-1}$,
- 5. Znalezienie przyrostu: $\Delta \mathbf{q}_i = [\mathbf{K}_T(\mathbf{q}_i)]^{-1} \Delta \mathbf{R}(\mathbf{q}_i)$,
- 6. Wyznaczenie wektora parametrów węzłowych: $\Delta \mathbf{q}_{i+1} = \mathbf{q}_i + \Delta \mathbf{q}_i$,
- 7. Wyznaczenie normy (zwykle euklidesowej) wektorów $\Delta \mathbf{q}_i$ i $\Delta \mathbf{R}(\mathbf{q}_i)$,
- 8. Sprawdzenie kryterium zbieżności,
- 9. Zwiększenie indeksu: i = i + 1 i powtórzenie kroków od 1 do 9.

Iteracje są wykonywane dotąd, aż zostaną spełnione kryteria zbieżności:

- a) przemieszczeniowe $\|\Delta \mathbf{q}_i\|_2 < \varepsilon_q \|\mathbf{q}_{ref}\|_2$
- b) silowe $\|\Delta \mathbf{R}(\mathbf{q}_i)\|_2 < \varepsilon_R \|\mathbf{R}_{ref}\|_2$

Wielkości ε_q i ε_R są tolerancjami, które z reguły przyjmuje się na poziomie około 0,1% wartości norm wektorów odniesienia \mathbf{q}_{ref} i \mathbf{R}_{ref} . Wektorem odniesienia w przypadku przemieszczeń jest najczęściej aktualny stan \mathbf{q}_i , natomiast w przypadku kryterium siłowego za wektor odniesienia przyjmuje się wartość obciążenia \mathbf{R}^0 z danego podkroku.

W metodzie elementów skończonych lepszą zbieżność uzyskuje się zwykle dla kryterium przemieszczeniowego.

Iteracyjne rozwiązanie układu nieliniowych równań jednoczesnych

Seria przybliżonych rozwiązań (iteracje): $\{q\}_0$, $\{q\}_1$, $\{q\}_2$, ... $\{q\}_n$ zbieżność do dokładnego rozwiązania

Wektor $\{q\}_i$ oblicza się na podstawie poprzedniego rozwiązania $\{q\}_{i=1}$

Techniki Iteracyjnego rozwiązania układu nieliniowych równań

Przykład 4: Znajdź przemieszczenie u dla sprężyny nieliniowej

Rozwiązanie analityczne:

Rozwiązanie numeryczne:

sztywność styczna:

$$k_T = \frac{dF}{du} = \frac{d}{du} \left(k(u)u \right) = \frac{dk}{du}u + k = 1 - 2u$$

19

Metoda przyrostowa

Obliczenia dotyczą przyrostów $\{R\}_i = \{F\} - [K]_{i-1}\{q\}_{i-1}$ wektora niewiadomych $\{q\}_i$ Początkowe rozwiązanie: $u_0 = 0 \Rightarrow k(u_0) = 1 - 0 = 1$ <u>Iteracja 1</u>: Wektor residualny: $R_1 = F_a - k(u_0) \cdot u_0 = F_a$ przyrost przemieszczenia: $\Delta u_1 = \frac{R_1}{k(u_0)}$ przemieszczenie: $u_1 = \Delta u_1 + u_0 = \Delta u_1$ Iteracja "i": $R_i = F_a - k(u_{i-1}) \cdot u_{i-1}$ F $\Delta u_i = \frac{R_i}{k(u_{i-1})}$

$$u_i = \Delta u_i + u_{i-1}$$

Kryteria zbieżności:

$$rac{\Delta u_i}{u_i} \leq \varepsilon$$
 ; $rac{R_i}{F} \leq \delta$

Metoda przyrostowa

Obliczenia dotyczą przyrostów wektora niewiadomych $\{q\}_i$

$$\{R\}_i = \{F\} - [K]_{i-1}\{q\}_{i-1}$$

Początkowe rozwiązanie:
$$u_0 = 0 \Rightarrow k(u_0) = 1 - 0 = 1$$

<u>lteracja 1</u> :				<u>lteracja "i</u>	$\ddot{-}: R_i = R$	$F_a - k(u_{i-1})$	$) \cdot u_{i-1}$	
Wektor resid	dualny: $R_1 =$	$F_a - k(u_0)$	$) \cdot u_0 = F_a$			R.		
przyrost przemieszczenia: $\Delta u_1 = \frac{R_1}{k(u_0)}$ przemieszczenie: $u_1 = \Delta u_1 + u_0 = \Delta u_1$					$\Delta u_i =$ $u_i = A$	$\frac{n_i}{k(u_{i-1})}$ $\Delta u_i + u_{i-1}$		
				L		1]	
i	<i>u</i> _{<i>i</i>-1}	$k_{i-1} = 1 - u_{i-1}$	$R_i = F - k_{i-1}u_{i-1}$	$\Delta u_i = \frac{R_i}{k_{i-1}}$	$u_i = u_{i-1} + \Delta u_i$	$\frac{\Delta u_i}{u_i}$	$\frac{R_i}{F}$	
1	0	1	0.2	0.2	0.2	1	1	
2	0.2	0.8	0.04	0.05 0.25 0.2 0.2				
3	0.25	0.75	0.0125	0.0167	0.2667	0.063	0.063	
4	0.2667	0.733	0.0044	0.006	0.2727	0.022	0.022	
5	0.2727	0.7273	0.0017	0.0023	0.2750	0.008	0.0085	

Kryteria zbieżności:

$$rac{\Delta u_i}{u_i} \leq arepsilon$$
 ; $rac{R_i}{F} \leq \delta$

Metoda Newtona-Raphsona

W każdej iteracji w obliczeniach liniowego układu równań używana jest macierz styczna $d\{F\}$ d[K]

$$[K]_T = \frac{d\{F\}}{d\{q\}} = [K] + \frac{d[K]}{d\{q\}}\{q\}$$

Sztywność styczna:

$$k_T = \frac{dF}{du} = \frac{d(k(u)) \cdot u}{du} = \frac{d(k(u))}{du} \cdot u + \frac{du}{du} \cdot k(u) = -u + 1 - u = 1 - 2 \cdot u$$

Początkowe rozwiązanie: $u_0 = 0 \Rightarrow k(u_0) = 1 - 0 = 1$

<u>Iteracja 1</u>: $k_{T1} = \frac{dF}{du}\Big|_{u} = 1 - 2 \cdot u_0$ Wektor residualny: $R_1 = F_a - k(u_0) \cdot u_0 = F_a$ przyrost przemieszczenia: $\Delta u_1 = \frac{R_1}{k_{Ta}}$ przemieszczenie: $u_1 = \Delta u_1 + u_0 = \Delta u_1$ <u>Iteracja "i"</u>: $k_{T1} = \frac{dF}{du}\Big|_{u_{i-1}} = 1 - 2 \cdot u_{i-1}$ $R_i = F_a - k(u_{i-1}) \cdot u_{i-1}$ $\Delta u_i = \frac{R_i}{k_{T_i}} \qquad u_i = \Delta u_i + u_{i-1}$

Metoda Newtona-Raphsona

W każdej iteracji w obliczeniach liniowego układu równań używana jest macierz styczna $d\{F\}$ d[P]

$$[K]_T = \frac{d\{F\}}{d\{q\}} = [K] + \frac{d[K]}{d\{q\}}\{q\}$$

Sztywność styczna:

$$k_T = \frac{dF}{du} = \frac{d(k(u)) \cdot u}{du} = \frac{d(k(u))}{du} \cdot u + \frac{du}{du} \cdot k(u) = -u + 1 - u = 1 - 2 \cdot u$$

Początkowe rozwiązanie: $u_0 = 0 \Rightarrow k(u_0) = 1 - 0 = 1$

<u>Iteracja 1</u> :	$k_{T1} = \frac{dF}{du}$	$2 \cdot u_0$	<u>lteracja</u>	$\underline{a}_{,,i}$: k_{T1}	$=\frac{dF}{du}\Big _{u_{i-1}}$	$= 1 - 2 \cdot u$	i-1			
Wektor resid	dualny: R_1 :	$= F_a - k(t)$	$(u_0) \cdot u_0 = 0$	$F_a \mid R_i = I$	$R_{i} = F_{a} - k(u_{i-1}) \cdot u_{i-1}$					
przyrost prz	emieszczenia:	$\Delta u_1 = \frac{1}{k}$	$\frac{R_1}{R_{T1}}$	$\Delta u_i =$	$\Delta u_i = \frac{R_i}{k_{T_i}} \qquad u_i = \Delta u_i + u_{i-1}$					
przemieszc	zenie: u_1 =	$= \Delta u_1 + u$	$_0 = \Delta u_1$	Kryteria	Kryteria zbieżności: $rac{\Delta u_i}{u_i} \leq arepsilon$; $rac{R_i}{F} \leq \delta$					
i	<i>u</i> _{<i>i</i>-1}	$k_{i-1} = 1 - u_{i-1}$	$R_i = F - k_{i-1}u_{i-1}$	$k_{\pi} = 1 - 2u_{i-1}$	$\Delta u_i = \frac{R_i}{k_{Ti}}$	$u_i = u_{i-1} + \Delta u_i$	$\frac{\Delta u_i}{u_i}$	$\frac{R_i}{F}$		
1	0	1	0.2	1	0.2	0.2	1	1		
2	0.2	0.8	0.04	0.6	0.0667	0.2667	0.250	0.2		
3	0.2667	0.7333	0.0044	0.466	0.0095	0.2762	0.048	0.034		
4	0.2762	0.7238	0.0001	0.448	0.0002	0.2764	0.001	0.0005		

Zmodyfikowana metoda Newtona-Raphsona

W każdej iteracji używany jest ten sam zestaw równań (ta sama macierz początkowa)

$$[K_0]^{-1}$$
 zamiast $[K]_{i-1}^{-1}$

Kryteria zbieżności:

$$\frac{\Delta u_i}{u_i} \leq \varepsilon$$
 ; $\frac{R_i}{F} \leq \delta$

i	u_{i-1}	$k_{i-1} = 1 - u_{i-1}$	$R_i = F - k_{i-1}u_{i-1}$	$\Delta u_i = \frac{R_i}{k_0}$	$u_i = u_{i-1} + \Delta u_i$	$\frac{\Delta u_i}{u_i}$	$\frac{R_i}{F}$
1	0	1	0.2	0.2	0.2	1	1
2	0.2	0.8	0.04	0.04	0.24	0.167	0.2
3	0.24	0.76	0.0176	0.0176	0.2576	0.068	0.088
4	0.2576	0.7424	0.0087	0.00876	0.2664	0.033	0.044
5	0.2664	0.7336	0.0046	0.0046	0.2710	0.017	0.023
6	0.2710	0.729	0.0024	0.0024	0.2734	0.009	0.012

Metoda Newtona-Raphsona

i	<i>u</i> _{<i>i</i>-1}	$k_{i-1} = 1 - u_{i-1}$	$R_i = F - k_{i-1}u_{i-1}$	$k_{\pi} = 1 - 2u_{i-1}$	$\Delta u_i = \frac{R_i}{k_{Ti}}$	$u_i = u_{i-1} + \Delta u_i$	$\frac{\Delta u_i}{u_i}$	$\frac{R_i}{F}$
1	0	1	0.2	1	0.2	0.2	1	1
2	0.2	0.8	0.04	0.6	0.0667	0.2667	0.250	0.2
3	0.2667	0.7333	0.0044	0.466	0.0095	0.2762	0.048	0.034
4	0.2762	0.7238	0.0001	0.448	0.0002	0.2764	0.001	0.0005

Procedura iteracji bezpośredniej (podejście przyrostowe)

i	u_{i-1}	$k_{i-1} = 1 - u_{i-1}$	$R_i = F - k_{i-1}u_{i-1}$	$\Delta u_i = \frac{R_i}{k_{i-1}}$	$u_i = u_{i-1} + \Delta u_i$	$\frac{\Delta u_i}{u_i}$	$\frac{R_i}{F}$
1	0	1	0.2	0.2	0.2	1	1
2	0.2	0.8	0.04	0.05	0.25	0.2	0.2
3	0.25	0.75	0.0125	0.0167	0.2667	0.063	0.063
4	0.2667	0.733	0.0044	0.006	0.2727	0.022	0.022
5	0.2727	0.7273	0.0017	0.0023	0.2750	0.008	0.0085

Zmodyfikowana procedura Newtona-Raphsona

i	u_{i-1}	$k_{i-1} = 1 - u_{i-1}$	$R_i = F - k_{i-1}u_{i-1}$	$\Delta u_i = \frac{R_i}{k_0}$	$u_i = u_{i-1} + \Delta u_i$	$\frac{\Delta u_i}{u_i}$	$\frac{R_i}{F}$
1	0	1	0.2	0.2	0.2	1	1
2	0.2	0.8	0.04	0.04	0.24	0.167	0.2
3	0.24	0.76	0.0176	0.0176	0.2576	0.068	0.088
4	0.2576	0.7424	0.0087	0.00876	0.2664	0.033	0.044
5	0.2664	0.7336	0.0046	0.0046	0.2710	0.017	0.023
6	0.2710	0.729	0.0024	0.0024	0.2734	0.009	0.012

Iteracyjne obliczenia nieliniowe w praktyce

Użytkownik wykonuje nieliniową analizę statyczną, dzieląc obciążenie na szereg kroków przyrostowych obciążenia i w każdym kroku wykonując kolejne przybliżenia liniowe w celu uzyskania równowagi. Każde przybliżenie liniowe wymaga jednego przejścia przez solver równań *(iteracja równowagi).*

 F_3

step 3

step4

F

step1

F₁

step

Nieliniowości geometryczne

Nieliniowość – charakterystyka mięknąca

Nieliniowości geometryczne

- TL Total Lagrange (stacjonarny opis Lagrange'a)
- UL Updated Lagrange (uaktualniony opis Lagrange'a)

Siły śledzące – (np. ciśnienie)

Nieliniowości geometryczne

Nieliniowości geometryczne w MES – test NAFEMS NL5 Elementy belkowe

> materiał sprężysty, duże przemieszczenia duże obroty

4.6.5 NL5: Straight cantilever with end moment

Product: Abaqus/Standard

Element tested

B22

х

Problem description

MSC/NASTRAN Nonlinear Analysis

y